
Int J Software Informatics, Vol., No., , pp. 1–?? E-mail: ijsi@iscas.ac.cn
International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org
c© by Institute of Software, Chinese Academy of Sciences. All rights reserved. Tel: +86-10-62661040

An Intuitive Modelling Interface
for Systems Biology

Ozan Kahramanoğulları1 and Luca Cardelli 2

1The Microsoft Research – University of Trento Centre for Computational and Systems Biology

2Microsoft Research Cambridge

Abstract We introduce a natural language interface for building stochastic π calculus

models of biological systems. In this language, complex constructs describing biochemical

events are built from basic primitives of association, dissociation and transformation. This

language thus allows us to model biochemical systems modularly by describing their dynam-

ics in a narrative-style language, while making amendments, refinements and extensions on

the models easy. We give a formal semantics for this language and a translation algorithm

into stochastic π calculus that delivers this semantics. We demonstrate the language on a

model of Fcγ receptor phosphorylation during phagocytosis. We provide a tool implemen-

tation of the translation into a stochastic π calculus language, Microsoft Research’s SPiM,

which can be used for simulation and analysis. 1 2

Key words: systems biology; stochastic π calculus; SPiM; modelling

O. Kahramanoğulları and L. Cardelli. An Intuitive Modelling Interface for Sys-

tems Biology. Int J Software Informatics, , (): 1–??.

1 Introduction

Modelling of biological systems by mathematical and computational techniques is

becoming increasingly widespread in research on biological systems. In recent years,

pioneered by Regev and Shapiro’s seminal work [28, 29], there has been a considerable

amount of research on applying computer science technologies to modelling biological

systems. Along these lines, various languages with stochastic simulation capabilities

based on, for example, process algebras [24, 5, 4, 27], term rewriting (see, e.g, [12,

9, 11, 2, 22, 1]) and Petri nets (see, e.g., [16, 32, 18]) have been proposed. However,

expressing biological knowledge in specialised modelling languages often requires a

simultaneous understanding of the biological system and expert knowledge of the

† This work is sponsored by UK Biotechnology and Biological Sciences Research Council through
the Centre for Integrative Systems Biology at Imperial College (grant BB/C519670/1).
‡ Corresponding author: O. Kahramanoğulları and L. Cardelli
] Manuscript received 2009-03-08; revised 2009-10-10; accepted 2009-10-10; published online 2009-
12-12
1 A preliminary version of this paper, co-authored by Dr. Emmanuelle Caron, has been presented at

the DCM’09 Workshop. We dedicate this paper to the memory of Emmanuelle, who unexpectedly

passed away in July 2009. It has been an honour to have worked with Emmanuelle, a biologist of

the highest calibre.
2 This work has been presented as oral presentation at the BioSysBio’09 Conference and Noise in

Life’09 Meeting, both held in Cambridge in March 2009.

2 International Journal of Software and Informatics, Vol., No.,

modelling language. Isolating and communicating the biological knowledge to build

models for simulation and analysis is a challenging task both for wet-lab biologists

and modellers.

Although languages based on Petri nets provide a representation scheme that

is akin to chemical reactions, they enjoy a limited expressive power with respect to

the biological phenomena that they capture [6]. Writing programs in more expres-

sive simulation languages requires specialised training, and it is difficult even for the

experts when complex interactions between biochemical species in biological systems

are considered: the representation of different states of a biochemical species with

respect to all its interaction capabilities results in an exponential blow up in the

number of states. For example, when a protein with n different interaction sites is

being modelled, this results in 2n states, which need to be represented in the model.

Enumerating all these states by hand, without inserting typos, is a difficult task.

To this end, we introduce an intuitive front-end interface language for building

process algebra models of biological systems: process algebras are languages that have

originally been designed to formally describe complex reactive computer systems. An

important feature of the process algebra languages is the possibility to describe the

components of a system separately and observe the emergent behaviour from the

interactions of the components (see, e.g., [4, 5]).

Our focus here is on the stochastic π calculus [21, 26], which is a broadly studied

process algebra because of its compactness, generality, and flexibility. Since biological

systems are typically highly complex and massively parallel, π calculus is well suited to

describe their dynamics. In particular, it allows the components of a biological system

to be modelled independently, rather than modelling individual reactions. This allows

large models to be constructed by composition of simple components. π calculus also

enjoys an expressive power in the setting of biological models that exceeds, e.g., Petri

nets [6].

In the following, we present a language that consists of basic primitives of asso-

ciation, dissociation and transformation. We impose certain consistency constraints

on these primitive expressions, which are required for the models that describe the

dynamics of biochemical processes. We give a formal semantics for the language and a

translation algorithm into stochastic π calculus that delivers this semantics. Based on

this, we present the implementation of a tool for automated translation of models into

Microsoft Research’s stochastic simulation language SPiM [24, 23], which can be used

to run stochastic simulations on π calculus models. We demonstrate the language on

a model of Fcγ receptor phosphorylation during phagocytosis. We then provide a dis-

cussion of the expressive power of the language. The implementation of the translation

tool as well as further information is available for download at our website 3.

2 Species, Sites, Sentences and Models

We adopt the abstraction of biochemical species as stateful entities with connectivity

interfaces [10, 20]. A species can have a number of sites in its interface through which

it interacts with other species, and may change its state as a result of the interactions.

In Section 3, we use this idea to design a natural language-like syntax for building

3 https://sites.google.com/site/ozankahramanogullari/software/pim

An Intuitive Modelling Interface for Systems Biology 3

models. The models written in this language can be automatically translated into a

SPiM program by using our tool, which implements the translation algorithm given

in Section 4: with this algorithm, we map the sentences of the language into events

constructed from basic primitives, which are then compiled into executable process

expressions in the SPiM language.

There is a countable set of species A,B,C, Each species has a finite set of

sites, denoted with a, b, c, . . . with which it can bind to other species or unbind from

other species when they are already bound. ε denotes the ‘dummy-site’, which is a

place holder. We write sentences that describe the ‘behaviour’ of each species with

respect to their sites. There are three kinds of sentences: associations, dissociations,

and transformations, defined as

〈 type, (A, a), (B, b), Pos, Neg, r 〉

where type ∈ {association, dissociation, transformation} is the type of the sentence.

The pairs (A, a) and (B, b) are called the body of the sentence. The sets Pos and Neg

are called the conditions of the sentences. (A, a) and (B, b) are pairs of species and

sites, and Pos and Neg are sets of such pairs of species and sites. If the sentence is

an association, it describes the event where the site a on species A associates to the

site b on species B if the sites on species in Pos are already bound and those in Neg

are already unbound. If it is a dissociation sentence, it describes the dissociation of

the site a on species A from the site b on species B if the sites on species in Pos

are already bound and those in Neg are already unbound. A transformation sentence

describes the event of species A transforming into species B, where B can be empty,

in which case it describes the decay of species A. r ∈ R+ denotes the rate of the event

that the sentence describes. A model M is a set of such sentences. In Section 3, we

give a representation of these sentences in natural-language. For example, a sentence

of the form 〈 association, (A, a), (B, b), {(A, c)}, { (A, a), (B, b) }, 1.0 〉 is given with

the following English sentence.

site a on A associates site b on B with rate 1.0

if site c on A is bound

and site a on A is unbound

and site b on B is unbound

We denote with species(M) the set containing all the species that occur in the body

of the sentences ofM. The function sites(M, A) denotes the set of sites that occur in

the body of some sentences ofM paired with A. sites(Pos, A) denotes the set of sites

of the species A in Pos (similarly for Neg). For any set A, ℘(A) denotes the powerset

of A.

2.1 Conditions on Sentences

Given a model M, we impose several conditions on its sentences.

1. Sentences contain relevant species. The species in the condition of each sen-

tence must be a subset of those in the body of the sentence.

2. Conditions of the sentences are consistent. For every sentence of the form

〈 type, (A, a), (B, b), Pos, Neg, r 〉, we have that Pos ∩Neg = ∅.

4 International Journal of Software and Informatics, Vol., No.,

3. All the sites in the conditions are declared in the model. For every sen-

tence of the form 〈 type, (A, a), (B, b), Pos, Neg, r 〉, we have that sites(Pos, A) ⊆
sites(M, A), sites(Neg, A) ⊆ sites(M, A), sites(Pos, B) ⊆ sites(M, B) and

sites(Neg, B) ⊆ sites(M, B).

4. Association sentences associate unbound species. For every association sen-

tence 〈 association, (A, a), (B, b), Pos, Neg, r 〉, we have that (A, a), (B, b) ∈ Neg.

5. Dissociation sentences dissociate bound species. For every dissociation sen-

tence 〈 dissociation, (A, a), (B, b), Pos, Neg, r 〉, we have that (A, a), (B, b) ∈ Pos.

6. Transformation sentences are unbound at all sites. For every transforma-

tion sentence 〈 transformation, (A, ε), (B, ε), Pos, Neg, r 〉, we have that Pos = ∅
and Neg = {(A, x) |x ∈ sites(M, A)}.

Condition 3 allows only those sites to appear in the conditions of the model that

are relevant to the association and dissociations in the body of the sentences. Although

this condition could be lifted without hampering the correctness of the models, it is

useful for avoiding redundancies.

When these conditions hold, we can map the sentences of a model to another

representation where the role of the conditions become more explicit. In the fol-

lowing, for a model M, we describe the states of its species as subsets of its sites,

where bound sites are included in the set describing the state. For example, for

a species A with binding sites sites(M, A) = {a1, a2}, the set ℘(sites(M, A)) =

{{}, {a1}, {a2}, {a1, a2}} is the set of all its states. Then {a1} is the state where

site a1 on A is bound and site a2 on A is unbound.

We map each sentence 〈 type, (A, a), (B, b), Pos, Neg, r 〉 to a sentence of the form

〈 type, (A, a), (B, b), states(A), states(B), r 〉

where states(A) and states(B) are obtained as follows.

states(A) = { S ∈ ℘(sites(M, A)) | ((A, x) ∈ Pos⇒ x ∈ S)∧(x ∈ S ⇒ (A, x) /∈ Neg) }

This representation allows us to impose another condition on the sentences:

7. There are no overlapping conditions in the sentences. For any two sen-

tences of a model M of the form 〈 type1, (A, a), (B, b), Pos1, Neg1, r 〉 and

〈 type2, (A, a), (B, b), Pos2, Neg2, r 〉 where type1 = type2, we obtain states(A)1
and states(B)1, for the first and states(A)2 and states(B)2, for the second sen-

tence. Then we have that

– if states(A)1 = states(A)2 then it must be that states(B)1 ∩ states(B)2 = ∅;
– if states(B)1 = states(B)2 then it must be that states(A)1 ∩ states(A)2 = ∅;
– if states(A)1 6= states(A)2 and states(B)1 6= states(B)2 then it must be that

states(A)1 ∩ states(A)2 = ∅ and states(B)1 ∩ states(B)2 = ∅.

This condition does not only make the translation that we present below easier,

but also helps to prevent ambiguities in the models by not allowing the definition of

two different interaction rates for any two model species for their same states.

An Intuitive Modelling Interface for Systems Biology 5

Example 1. Consider the model M1.

M1 = { 〈 association, (A, a), (B, b), {(B, f)}, {(C, c), (A, a), (B, f)}, 1.0 〉,
〈 dissociation, (A, a), (B, b), {(B, b)}, {}, 1.0 〉,
〈 transformation, A, B, {}, {}, 1.0 〉,
〈 association, (D, d), (E, e), {}, {(D, d), (E, e)}, 2.0 〉,
〈 association, (D, d), (E, e), {}, {(D, d), (E, e)}, 4.0 〉 }

This model does not fulfill any of the conditions above: in the first sentence, (1.)

C /∈ {A,B}; (2.) (B, f) ∈ Pos and (B, f) ∈ Neg; (3.) f /∈ {b}; (4.) (B, b) /∈
{(C, c), (A, a), (B, f)}. In the second sentence, (5.) (A, a) /∈ {(B, b)}. In the third

sentence, (6.) {} 6= {(A, a)}. (7.) In the fourth and fifth sentences, states(D)1 =

{{}} = states(D)2 and states(E)1 = {{}} = states(E)2.

Example 2. The model M2 fulfills all the conditions above.

M2 = { 〈 association, (A, a1), (B, b), {}, {(A, a1), (B, b)}, 1.0 〉,
〈 association, (A, a2), (C, c), {}, {(A, a2), (C, c)}, 1.0 〉,
〈 dissociation, (A, a1), (B, b), {(A, a1), (A, a2), (B, b)}, {}}, 2.0 〉,
〈 dissociation, (A, a1), (B, b), {(A, a1), (B, b)}, {(A, a2)}}, 4.0 〉 }

3 The Narrative Language

We are now ready to define a natural-language-like narrative language for describing

molecular events that are typically modelled in systems biology. For this purpose,

we resort to the data structures given above. Let us first define the syntax of the

language.

3.1 Syntax of the Language

The syntax of the language is defined in BNF notation, where optional elements are

enclosed in braces as {Optional}. A model (description) consists of sentences of the

following form.

6 International Journal of Software and Informatics, Vol., No.,

Model ::= Sentence1 . . . Sentencem m ≥ 1

Sentence ::= Association

| Dissociation

| Transformation

| Decay

| Phosphorylation

| Dephosphorylation

Association ::= Site on Species associates Site on Species

{with rate Float} {if Conditions}

Dissociation ::= Site on Species dissociates Site on Species

{with rate Float} {if Conditions}

Phosphorylation ::= Site on Species gets phosphorylated

{with rate Float} {if Conditions}

Dephosphorylation ::= Site on Species gets dephosphorylated

{with rate Float} {if Conditions}
Transformation ::= Species becomes Species {with rate Float}

Decay ::= Species decays {with rate Float}

Conditions ::= Condition

| Condition and Conditions

Condition ::= Site on Species is bound

| Site on Species is unbound

Site ::= String

Species ::= String

In our implementation of the translation algorithm, each sentence of a model,

given in this syntax, is mapped by a lexer and a parser to a data structure of the

form given in Section 2 in the obvious way. Phosphorylation sentences are treated as

association sentences where the second species is by default Phosph with the binding

site phosph. The dephosphorylation sentences are mapped similarly to dissociation

sentences. If not given, a default rate (1.0) is assigned to sentences. In our imple-

mentation of the translation, we allow the association and dissociation sites not to be

included in the conditions. We thus include these sites in the conditions automatically

during the compilation if all the other conditions are met.

3.2 Semantics of the Language

A narrative given in the syntax defined above describes the dynamics of the system

that it models: a narrative given in this syntax can be translated into a stochastic π

calculus model by mapping each narrative sentence to the data structures of Section 2,

An Intuitive Modelling Interface for Systems Biology 7

and then by applying the algorithm given in Section 4. Then the reduction semantics

of the stochastic π calculus can be applied to the model (see Section 4).

We give a reduction semantics directly on the narrative sentences, which corre-

sponds to the reduction semantics of the stochastic π calculus. For this purpose, we

define a solution, denoted with Z, as a multiset4 of species. For each species in the

solution, we give a representation of its state with respect to its bound binding sites as

in Section 2: for a species A ∈ species(M) of a modelM, consider the set sites(M, A)

of all the sites of A in M. Every instance of a species A in the solution is equipped

with a subset of the set sites(M, A), which denotes the state of A where these sites

are bound. Moreover, we borrow from the κ calculus [9, 11] the notation of bonds as

superscripts: we decorate each site with a natural number as a superscript to denote

an explicit bond. This natural number appears strictly twice in the solution, once as

the superscript of the site of A and once as the superscript of another site of a species

with which A is bound.

Example 3. Consider the model M2 of Example 2, and the solution Z below for

this model.

Z = {̇A{a11, a22}, B{b1}, C{c2}, A{a31}, B{b3}, A{a42}, C{c4}, A{}, A{}, B{}, C{} }̇

In solution Z, there is an instance of the species A that has bonds with instances of

the species B and C; there is an instance of A that has a bond with an instance of B;

and an instance of A that has a bond with an instance of C. There are two unbound

instances of A, an unbound instance of B, and an unbound instance of C.

We are now ready to define the reduction semantics of the narrative language.

Definition 4. Consider a model M that fulfils the conditions given in Subsection

2.1. Let A, B be species in M; and X, Y be sets of sites such that X ⊆ sites(M, A)

and Y ⊆ sites(M, B). We define the reduction in the narrative language as follows.

Association : M⇒ {̇A(X), B(Y) }̇ ∪̇ Z r−→pim {̇A({ak} ∪ X), B({bk} ∪ Y) }̇ ∪̇ Z

if and only if there is a sentence in M of the form

〈 association, (A, a), (B, b), Pos, Neg, r 〉

such that {x | (x,A) ∈ Pos} ⊆ X, X ∩ {x | (x,A) ∈ Neg} = ∅, {y | (y,B) ∈ Pos} ⊆ Y ,

Y ∩ {y | (y,B) ∈ Neg} = ∅, a /∈ X, b /∈ Y , and k ∈ N+ does not appear anywhere in

Z.

Dissociation : M⇒ {̇A({ak} ∪ X), B({bk} ∪ Y) }̇ ∪̇ Z r−→pim {̇A(X), B(Y) }̇ ∪̇ Z

if and only if there is a sentence in M of the form

〈 dissociation, (A, a), (B, b), Pos, Neg, r 〉

such that {x | (x,A) ∈ Pos} ⊆ X ∪ {a}, X ∩ {x | (x,A) ∈ Neg} = ∅, {y | (y,B) ∈

4 Multisets are denoted by the curly brackets “{̇ }̇”. ∪̇ , −̇ and ⊆̇ denote the multiset operations
corresponding to the usual set operations ∪ , − and ⊆ , respectively.

8 International Journal of Software and Informatics, Vol., No.,

Pos} ⊆ Y ∪ {b}, Y ∩ {y | (y,B) ∈ Neg} = ∅, a /∈ X, b /∈ Y , and k ∈ N+ does not

appear anywhere in Z.

Transformation : M⇒ {̇A{} }̇ ∪̇ Z r−→pim {̇B{} }̇ ∪̇ Z
if and only if there is a sentence in M of the form

〈 transformation, A, B, Pos, Neg, r 〉 .

4 Translation into Stochastic π calculus

In this section, we give an algorithm for translating models written in the narrative

language into processes of the stochastic π calculus. Here we use a version of the

stochastic π calculus, where each action can be associated with a stochastic weight

[5]. The availability of this extension allows us to regulate the creation of channels

and improves the modularity in our translation. For the representation of the states

of species in the stochastic π calculus specifications, we use sets of the sites of each

species.

The translation algorithm maps each model to an intermediate data structure

that we call compile map, which is then translated into a π calculus specification.

Let us first recall some of the definitions of the stochastic π calculus, implemented in

SPiM [23]. Here we adapt the SPiM syntax as in [5].

4.1 Stochastic π calculus

In stochastic π calculus, the basic building blocks are processes which are defined as

follows.

Definition 5. [5] Syntax of the stochastic π calculus: processes range over P,Q, . . .

Below fn(P) denotes the set of names that are free in P .

P, Q ::= M Choice

| X(n) Instance

| P | Q Parallel

| new x P Restriction

M ::= () Null

| π; P Action

| do π1;P1 or...or πN;PN Actions

E ::= {} Empty

| E,X(m) = P Definition,

fn(P) ⊆ m

π ::= ?x(m)*r Input

| !x(n)*r Output

| delay@r Delay

Expressions above are considered equivalent up to the least congruence relation given

by the equivalence relation ≡ defined as follows.

P | () ≡ P

P | Q ≡ Q | P

P | (Q | R) ≡ (P | Q) | R

X(m) = P X(n) ≡ P{m:=n}
new x () ≡ ()

new x new y P ≡ new y new x P

x/∈fn(P) new x (P | Q) ≡ P | new x Q

An Intuitive Modelling Interface for Systems Biology 9

The reduction rules of the calculus are given below. Each rule is labelled with a

corresponding rate that denotes the rate of a single reaction, which can be either a

communication or a delay. The rules are standard except for the communication rule

(2), where the rate of the communication is given by the weights of the input and

output actions.

Definition 6. [5] Reduction in the stochastic π calculus.

(1) do delay@r; P or ...
r−→ P

(2) (do !x(n)*r1; P1 or...)

| (do ?x(m)*r2; P2 or...)
ρ(x)·r1·r2−→ P1 | P2{m:=n}

(3) P
r−→P’ new x P

r−→ new x P’

(4) P
r−→P’ P | Q

r−→ P’ | Q

(5) Q≡P r−→P’≡Q’ Q
r−→ Q’

A process can send a value n on channel x with weight r1 and then do P1, written

!x(n)*r1;P1, or it can receive a value m on channel x with weight r2 and then do

P2, written ?x(m)*r2;P2. With respect to the reduction semantics above, if these

complementary send and receive actions are running in parallel, they can synchronise

on the common channel x and evolve to P1 | P2{m:=n}, where m is replaced by n in

process P2. This allows messages to be exchanged from one process to another. Each

channel name x is associated with an underlying rate given by ρ(x). The resulting

rate of the interaction is given by ρ(x) times the weights r1 and r2. These weights

decouple the ability of two processes to interact on a given channel x from the rate

of the interaction, which can change over time depending on the evolution of the

processes. If no weight is given then a default weight of 1 is used.

4.2 Compile Maps

As a first step for the translation, we map models into compile maps, denoted with C.
A compile map is a set of expressions that we call process descriptions for each species

A ∈ species(M). For a model M, the process description of species A ∈ species(M),

denoted with P(A), is the pair 〈A, actions(A)〉. Here, actions(A) is the set collecting

actions(A,S) for every S ∈ ℘(sites(M, A)).

actions(A,S) = 〈S, assoc(A,S), dissoc(A,S), transform(A,S)〉

We define assoc(A,S) as the set of assoc(A,S, a) for every a ∈ sites(M, A).

assoc(A,S, a) = 〈a, assocPartners(A,S, a)〉

where assocPartners(A,S, a) is the set

{〈B, b, states(B), r〉 |
(〈 association, (A, a), (B, b), Pos, Neg, r 〉 ∈ M ∧ S ∈ states(A))

∨ (〈 association, (B, b), (A, a), Pos, Neg, r 〉 ∈ M ∧ S ∈ states(A)) } .

We define dissoc(A,S), similarly, as the set of dissoc(A,S, a) for every a ∈ sites(M, A).

dissoc(A,S, a) = 〈a, dissocPartners(A,S, a)〉

10 International Journal of Software and Informatics, Vol., No.,

where dissocPartners(A,S, a) is the set

{〈B, b, states(B), r〉 |
(〈 dissociation, (A, a), (B, b), Pos, Neg, r 〉 ∈ M ∧ S ∈ states(A))

∨ (〈 dissociation, (B, b), (A, a), Pos, Neg, r 〉 ∈ M ∧ S ∈ states(A)) } .

If S = ∅, the set transform(A,S) is defined as

{〈B, r〉 | (〈 transformation, A, B, Pos, Neg, r 〉 ∈ M} .

Otherwise, it is ∅.

Example 7. Consider the model M2 in Example 2. We have that the compile map

C2 for this model, which is as follows.

{ 〈A, { 〈 {}, {(a1, {(B, b, {{}}, 1.0)}), (a2, {(C, c, {{}}, 1.0)}, {}, {} 〉 ,
〈 {a1}, {(a2, {(C, c, {{}}, 1.0)}, {(B, b, {{b}}, 4.0)}, {} 〉 ,
〈 {a2}, {(a1, {(B, b, {{}}, 1.0)}, {}, {} 〉 ,
〈 {a1, a2}, {}, {(B, b, {{b}}, 2.0)}, {} 〉 } 〉 ,

〈B, { 〈 {}, {(b, {(A, a1, {{}, {a2}}, 1.0)}, {}, {} 〉 ,
〈 {b}, {}, {(b, {(A, a1, {{a1}}, 4.0), (A, a1, {{a1, a2}}, 2.0)}, {} 〉 } 〉 ,

〈C, { 〈 {}, {(a1, {(A, a2, {{}, {a1}}, 1.0) }, {}, {} 〉 ,
〈 {c}, {}, {}, {} 〉 } 〉 }

4.3 From Compile Maps to Stochastic π calculus

We construct a stochastic π calculus specification from the compile map C of a model

M. For each species A ∈ species(M), we map the process description P(A) to a

process specification in stochastic π calculus. Let

P(A) = 〈A, { actions(A,S1), . . . , actions(A,Sn) }〉

where ℘(sites(M, A)) = {S1, . . . ,Sn}, that is, the powerset of set of sites of A. Thus,

there are n process specifications for the species A, some of which may be empty.

Each process specification for each state S of A is of the following syntactic form.

process declaration “= (” local channel declarations

“do” association specifications

“or” dissociation specifications

“or” transformation specifications “)”

The idea here is that each set of sites of a species A denotes the state where the

sites in the set are bound. Thus, the powerset of the set of sites of a species denotes

the set of all its states. Now, let us obtain the process expression for each state Si
with respect to actions(A,Si) where 1 ≤ i ≤ n. Let us consider Si = {a1, . . . , ak} of

A with

actions(A,Si) = 〈Si , assoc(A,Si), dissoc(A,Si), transform(A,Si)〉 .

Process declaration

The expression for process declaration is a process name with its list of parameters.

It is delivered by the dissociation sentences in M and Si = {a1, . . . , ak}. For every

An Intuitive Modelling Interface for Systems Biology 11

aj ∈ Si, consider the set

R(A, aj) =

{(aj , (r/2)) | 〈dissociation, (A, aj), (B, b), Pos, Neg, r〉 ∈ M} ∪
{(aj , (r/2)) | 〈dissociation, (B, b), (A, aj), Pos, Neg, r〉 ∈ M} ∪

{(aj , 1.0) | 〈dissociation, (B, b), (A, aj), Pos, Neg, r〉 /∈ M ∧
〈dissociation, (A, aj), (B, b), Pos, Neg, r〉 /∈ M} .

We associate each element of the set R(A, aj) a unique label s ∈ N+ and obtain

R′(A, aj). Then if R′(A, aj) = {(aj , r1, 1), . . . , (aj , r`, `) } we write the process dec-

laration for A at state Si = {a1, . . . , ak} as follows.

Ai(a11, . . . , a1`1, , ak1, . . . , ak`k)

Example 8. For the state S2 = {a1} of species A of Example 2, we have the process

declaration below, since we have that R′(A, a1) = {(a1, 2.0, 1), (a1, 1.0, 2)}.

A2(a11, a12)

Local channel declarations

These expressions are delivered by the dissociation sentences inM and the assoc(A,Si).
That is, for every

assoc(A,Si, aj) = 〈 aj , assocPartners(A,Si, aj) 〉 ∈ assoc(A,Si) ,

and for every 〈B, b, states(B), r 〉 ∈ assocPartners(A,Si, aj) consider the set

U(A, aj , B, b) =

{(aj , (r/2)) | 〈dissociation, (A, aj), (B, b), Pos, Neg, r〉 ∈ M ∧ aj ≺ b } ∪
{(aj , (r/2)) | 〈dissociation, (B, b), (A, aj), Pos, Neg, r〉 ∈ M ∧ aj ≺ b } ∪
{(aj , 1.0) | 〈dissociation, (B, b), (A, aj), Pos, Neg, r〉 /∈ M ∧

〈dissociation, (A, aj), (B, b), Pos, Neg, r〉 /∈ M ∧ aj ≺ b }

where ≺ denotes a lexicographic order on sites. We associate each element of the set

U(A, aj , B, b) a unique label s ∈ N+ to obtain U ′(A, aj , B, b). Then if

U ′(A, aj , B, b) = {(aj , r1, 1), . . . , (aj , r`, `)}

then we write the channel declarations for assoc(A,Si, aj) as follows.

new aj1@r1 . . . new aj`@r`

Example 9. For the state S2 = {a1} of species A of Example 2, we have the channel

declarations below, since we have that U ′(A, a2, B, b) = {(a2, 1.0, 1)}.

new a21@1.0

Association specifications

The expression for association specifications for species A at state assoc(A,Si) is

delivered by assoc(A,Si). For every

〈 aj , assocPartners(A,Si, aj) 〉 ∈ assoc(A,Si),

12 International Journal of Software and Informatics, Vol., No.,

and for every 〈B, b, states(B), r 〉 ∈ assocPartners(A,Si, aj) consider the set

B(A, aj , B, b) =

{(!ajb, r) | 〈(B, b), states(B), r〉 ∈ assocPartners(A,Si, aj) ∧ aj ≺ b } ∪
{(?baj , r) | 〈(B, b), states(B), r〉 ∈ assocPartners(A,Si, aj) ∧ b ≺ aj } .

We associate each element of the set B(A, aj , B, b) a unique label s ∈ N+ and obtain

B′(A, aj , B, b). Association of site aj on A results in the state Si′ = Si∪{aj}. For each

element of (!ajb, rs, s) ∈ B′(A, aj , B, b) we write the following, composed by “or”.

!ajbs(aj1, . . . , aj`);continuation

The association channel names, such as ajbs here, are also declared as global channel

declarations, preceding all the process declarations. The continuation is written for A

in Si′ as for process declarations above, however we write nil for the channel names

for those associations of site aj on A with some site b′ 6= b. Here, nil is the nil-

dissociation channel with rate 0. We obtain aj1, . . . , aj` from the set U(A, aj , B, b) as

in channel declarations.

Example 10. For the state S2 = {a1} of species A of Example 2, we have the

following association specifications.

!a2c1(a2);A3(a11, a12, a2)

Dissociation specifications

The expression for dissociation specifications for species A at state assoc(A,Si) is

delivered by dissoc(A,Si). For every

〈 aj , dissocPartners(A,Si, aj) 〉 ∈ dissoc(A,Si),

and for every 〈B, b, states(B), r 〉 ∈ dissocPartners(A,Si, aj) consider the set

G(A, aj , B, b) =

{(!aj , r) | 〈(B, b), states(B), r〉 ∈ dissocPartners(A,Si, aj) ∧ aj ≺ b } ∪
{(?b, r) | 〈(B, b), states(B), r〉 ∈ dissocPartners(A,Si, aj) ∧ b ≺ aj } .

We associate each element of the set G(A, aj , B, b) a unique label s ∈ N+ and obtain

G′(A, aj , B, b). Dissociation of aj on A results in the state Si′ = Si \ {aj}. For each

(!aj , rs, s) ∈ G′(A, aj , B, b) we write the following, composed by “or”.

!ajs;continuation or ?ajs;continuation

The continuation is written for A in Si′ as for process declarations above.

Example 11. For the state S2 = {a1} of species A of Example 2, we have the

following dissociation specifications.

!a11;A1() or ?a11;A1()

An Intuitive Modelling Interface for Systems Biology 13

Transformation specifications

The expression for transformation specifications for species A is given only if the state

S = {}. In that case, for transfrom(A, {}) = {(B1, r1), . . . , (Bk, rk)} we write

delay@r1;B1() or . . . or delay@rk;Bk()

4.4 Translating Solutions

A solution consisting of a multiset of species is translated as the parallel composition of

the processes, which are given by the translation of the instances of the species in that

solution. This expression is preceded with the declaration of the private names, which

denote the bonds between species, and are obtained with respect to the superscripts

of the species’ sites in the solution. For every superscript k that connects the site a

of species A with the site b of species B, let us consider the set

Q(k,A, a,B, b) =

{(ek, (r/2)) | 〈dissociation, (A, a), (B, b), Pos, Neg, r〉 ∈ M} ∪
{(ek, (r/2)) | 〈dissociation, (B, b), (A, a), Pos, Neg, r〉 ∈ M} ∪

{(ek, 1.0) | 〈dissociation, (B, b), (A, a), Pos, Neg, r〉 /∈ M ∧
〈dissociation, (A, a), (B, b), Pos, Neg, r〉 /∈ M} .

We associate each element of the set Q(k,A, a,B, b) a unique label s ∈ N+ and obtain

Q′(k,A, a,B, b). Then if Q′(k,A, a,B, b) = {(ek, r1, 1), . . . , (ek, r`, `)} then we write

the following expression.

new ek 1@r1 . . . new ek 1`@r`

Then, for each species A with the state Si = {a1, . . . , an}in the solution, we write

Ai(ek1 1, . . . , ek1 `1, , ekn 1, . . . , ekn `n)

where each ekj j, . . . , ekj `j is obtained from the set Q(k,A, aj , B, b).

4.5 Correctness

Let us denote with the function Π the translation algorithm given in Subsections 4.2,

4.3 and 4.4 as a function from models to processes. We can now state the following

proposition.

Proposition 12. For any modelM that fulfils the conditions of Section 2, solutions

Z and Z ′, and the stochastic π calculus specification Π(M) obtained from M, we

have that M⇒ Z r−→pim Z ′ if and only if Π(Z)
r−→ Π(Z ′).

Proof. Proof by case analysis on the sentence used in the reduction for the ‘if’ direction,

and on the rules of reduction given in Definition 6 for the ‘only if’ direction. Each

step of the algorithm in Section 4 is a bijective function modulo the ordering of the

sentences and their conditions. The conditions given in Subsection 2 establish the

uniqueness of the reduction steps.

5 A Model of Fcγ Receptor-mediated Phagocytosis

We demonstrate the use of the language on a model of Fcγ receptor (FcγR) phos-

phorylation during phagocytosis, where the binding of complexed immunoglobulins

14 International Journal of Software and Informatics, Vol., No.,

Fig. 1. A simple model of the phosphorylation of the ITAM domain on the Fcγ receptor
during phagocytosis. Adapted from [14].

G (IgG) to FcγR triggers a signalling cascade that leads to actin-driven particle en-

gulfment [14, 31, 7]. When a small particle is coated (opsonised) with IgG, the Fc

regions of the IgG molecules can bind to FcγRs in the plasma membrane and initiate

a phagocytic response: a signalling cascade then drives the remodelling of the actin

cytoskeleton close to the membrane. This results in cup-shaped folds of plasma mem-

brane that extend outwards around the internalised particle and eventually close into

a plasma membrane-derived phagosome.

FcγR contains within its cytoplasmic tail an immunoreceptor tyrosine-based ac-

tivation motif (ITAM). The association of FcγR with an IgG induces the phosphory-

lation of two tyrosine residues within the ITAM domain by Src-family kinases. The

phosphorylated ITAM domain then recruits Syk kinase, which propagates the signal

further to downstream effectors (see Figure 1). In our language, we can describe the

initial phases of this cascade as follows:

site f on FcR associates site i on IgG with rate 2.0

site y on FcR gets phosphorylated if site f on FcR is bound

site z on FcR gets phosphorylated if site f on FcR is bound

The first sentence above describes the binding of FcγR to IgG. The second and

third sentences describe the phosphorylation of the two tyrosine residues on ITAM

(association of a Phosph0() molecule). This is automatically translated by our tool

into the SPiM program given in Appendix A. We can then run stochastic simulations

on the model given by these sentences.

By using this language and our translation tool, we can build models of different

size and complexity, and modify and extend these models with respect to the knowl-

edge in hand on the different sites and interaction capabilities of the FcγR, as well as

other biological systems. For example, the model above abstracts away from the role

played by the Src kinases in the phosphorylation of the FcγR as depicted in Figure

2, which plays a role in the phosphorylation of ITAM domain. The sentences above

can be easily modified and extended to capture this aspect in the model as follows.

site f on FcR associates site i on IgG with rate 2.0

site y on FcR gets phosphorylated if site s on FcR is bound

site z on FcR gets phosphorylated if site s on FcR is bound

site s on FcR associates site sr on Src if site f on FcR is bound

An Intuitive Modelling Interface for Systems Biology 15

Fig. 2. A refinement of the model depicted in Figure 1 with the role of Src kinase. Adapted
from [14].

site s on FcR dissociates site sr on Src

The SPiM program resulting from automated translation of this model is given

in Appendix B. It is important to note that, because FcR has 4 binding sites in the

model above, in the SPiM code resulting from the translation, there are 16 species for

FcR, denoting its different possible states. However, in the code given in Appendix

A, there are 8 species for FcR denoting its states that result from its 3 binding sites

in that model.

6 Expressivity

The aim of the language presented here is to provide a high level interface to stochastic

π calculus models for describing phenomena that are addressed in systems biology,

especially those in cellular signalling. In this respect, the level of expressivity of our

narrative language suffices to address common patterns in cellular signal transduction

[15].

The Kohn diagram graphical representation [19] of biological pathways provides

a formal notation for the patterns that occur in cellular pathways. Indeed, the prim-

itives presented here cover the reaction symbols of Kohn diagrams with respect to

their ‘combinatorial’ interpretation given in [19]: association and dissociation primi-

tives permits the representation of covalent and non-covalent bonds, including dimeri-

sations, and their cleavage. These interactions can also be composed to represent en-

zymatic catalysis as illustrated in the examples above. The transformation primitive

is useful in representing a limited form of stoichometric conversion and degradation

of species.

The narrative language presented here does not include a primitive for the tran-

scription symbol of Kohn diagrams, however an extension along these lines can be

introduced as in, e.g., [3]. Moreover, the language here remains within the boundaries

of representation to permit the analysis of models by using other techniques, e.g., the

algorithm developed for κ calculus for obtaining ordinary differential equation models

[13] remain within the setting of the language presented here.

Our narrative language and the translation algorithm given in Section 4 can be

seen as a compilation of a biologically meaningful minimal rule-based language frag-

ment [12, 9, 11, 2, 22, 1] into the stochastic π calculus. Such an algorithm provides a

16 International Journal of Software and Informatics, Vol., No.,

stochastic semantics for rule based languages with respect to the stochastic π calcu-

lus. Despite the exponential blow up in the number of states during the translation,

this is an advantage due to the ease in implementing an interaction-base engine in

comparison to a rewrite-based engine, in particular for stochastic behaviors. This is

because extending pi-calculus (or Petri nets) with a stochastic semantics and a Gille-

spie style implementation is now quite standard, while the stochastic semantics and

implementation of rewrite rules is much more subtle due to the necessary enumeration

of all the possible rewrites.

The following example that we borrow from [8] is instrumental in illustrating the

language with respect to the κ calculus. Consider a biomolecular species T with a

phosphorylation site x that gets phosphorylated by a kinase K and gets dephospho-

rylated by a phosphatase P. We can describe the interaction of these species in the

narrative language with the following model.

site a on T associates site k on K

site a on T dissociates site k on K

site x on T gets phosphorylated if site a on T is bound

site b on T associates site p on P

site b on T dissociates site p on P

site x on T gets dephosphorylated if site b on T is bound

As it is illustrated in this example, the conditions of the sentences allow us to

constraint the association and dissociation of the species with respect to the state

of their other binding sites. This allows us to write models that capture the idea

that species can change their conformation as a result of an interaction with another

species, and as a result of this, they can gain or lose other interaction capabilities.

This makes it possible, for instance, to describe interactions where the rate depends

on the state of the species that are bound with the species that interact. However,

when the states of the sites of a species do not affect the interactions they can be left

unspecified. For example, to the first sentence of the model above, we can add the

condition ‘if site b on T is unbound’. This would then restrict the binding of the

kinase K to the states of T where the phosphatase P is not bound.

Our representation of models provides an abstraction for the stochastic π calculus

models of biological systems. However, the level of abstraction that we have chosen still

requires the association and dissociation sites of the species to be explicitly declared in

the models. This level of abstraction can be easily lifted by automatically populating

a model with sites, if these sites would be chosen not to be specified.

7 Discussion

We have introduced a natural language interface for building stochastic π calculus

models of biological systems. The κ-calculus [12, 9, 10, 11] and the work on Beta-

binders in [20, 17] have been a source of inspiration for this language.

In [20], Guerriero et al. give a narrative style interface for the process algebra

Beta-binders for a rich biological language. In our language, we build complex events

such as phosphorylation and dephosphorylation of sites as instances of basic primitives

An Intuitive Modelling Interface for Systems Biology 17

of association, dissociation and transformation. We give a functional translation algo-

rithm for our translation into stochastic π calculus. The conditions that we impose on

the models are automatically verified in the implementation of our tool. These con-

ditions should be instrumental for ‘debugging’ purposes while building increasingly

large models.

The work presented in this paper can be seen as a translation of a fragment of

the κ calculus into the stochastic π calculus. Another approach similar to the one in

this paper is the work by Laneve et al. in [25], where the authors give an encoding

of nano-κ-calculus in SPiM. In comparison with our algorithm, the encoding in [25]

covers a larger part of nano-κ by using the SPiM language as a programming language

for implementing a notion of term rewriting, where there is an explicit function for

matching. The algorithm in [25] gives the different states of a species in the SPiM

encoding with respect to the parameters of that species as in κ-calculus.

Our narrative language has been applied to genetic programming to automate

the construction of models [30]. In Ross’ work, given a description of desired time-

course data, generic programming explores a search space to construct a model in our

language that might generate this data.

References

[1] J. A. Bachman and P. Sorger. New approaches to modeling complex biochemistry.
Nature Methods, 8(2):130–131, 2011.

[2] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek. BioNetGen:
Software for rule-based modeling of signal transduction based on the interactions
of molecular domains. Bioinformatics, 20:3289–3292, 2004.

[3] R. Blossey, L. Cardelli, and A. Phillips. Compositionality, stochasticity and
cooperativity in dynamic models of gene regulation. HFSP Journal, 2(1):17–28,
2008.

[4] L. Cardelli, E. Caron, P. Gardner, O. Kahramanoğulları, and A. Phillips. A
process model of actin polymerisation. In FBTC’08, volume 229 of ENTCS,
pages 127–144. Elsevier, 2008.

[5] L. Cardelli, E. Caron, P. Gardner, O. Kahramanoğulları, and A. Phillips. A
process model of Rho GTP-binding proteins. Theoretical Computer Science,
410/33-34:3166–3185, 2009.

[6] L. Cardelli and G. Zavattaro. On the computational power of biochemistry. In
AB’08, volume 5147 of LNCS, pages 65–80. Springer, 2008.

[7] C. Cougoule, S. Hoshino, A. Dart, J. Lim, and E. Caron. Dissociation of re-
cruitment and activation of the small G-protein Rac during Fc gamma receptor-
mediated phagocytosis. J. Bio. Chem., 281:8756–8764, 2006.

[8] V. Danos. Agile modelling of cellular signalling. SOS’08 invited paper, 2008.
[9] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based mod-

elling of cellular signalling. In CONCUR’07, volume 4703 of LNCS, pages 17–41.
Springer, 2007.

[10] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine. Rule-based mod-
elling, symmetries, refinements. In FMSB’08, volume 5054 of LNCS, pages 103–
122. Springer, 2008.

[11] V. Danos, J. Feret, W. Fontana, and J. Krivine. Abstract interpretation of
cellular signalling networks. In VMCAI’08, volume 4905 of LNBI, pages 83–97.
Springer, 2008.

[12] V. Danos and C. Laneve. Formal molecular biology. Theoretical Computer Sci-
ence, 325(1):69–110, 2004.

[13] J. Feret, V. Danos, J. Krivine, R. Harmer, and W. Fontana. Internal coarse-

18 International Journal of Software and Informatics, Vol., No.,

graining of molecular systems. Proceedings of the National Academy of Sciences,
106(16):6453–6458, 2008.

[14] E. Garcia-Garcia and C. Rosales. Signal transduction during Fc receptor-
mediated phagocytosis. Journal of Leukocyte Biology, 72:1092–1108, 2002.

[15] A. Goldbeter and J. E. Koshland. An amplified sensitivity arising from cova-
lent modification in biological systems. Proceedings of the National Academy of
Sciences, 78(11):6840–6844, 1981.

[16] P. J. Goss and J. Peccoud. Quantitative modeling of stochastic systems in molec-
ular biology by using stochastic petri nets. PNAS, 95(12):6750–5, 1998.

[17] M. L. Guerriero, A. Dudka, N. Underhill-Day, J. K. Heath, and C. Priami.
Narrative-based computational modelling of the gp130/jak/stat signalling path-
way. BMC Systems Biology, 3:40, 2009.

[18] M. Heiner, D. Gilbert, and R. Donaldson. Petri nets for systems and synthetic
biology. In SFM’08, volume 5016 of LNCS, pages 215–264. Springer, 2008.

[19] K. W. Kohn, M. I. Aladjem, S. Kim, J. N. Weinstein, and Y. Pommier. Depicting
combinatorial complexity with the molecular interaction map notation. Molecular
Systems Biology, 2:51, 2006.

[20] C. Priami M. L. Guerriero, J. K. Heath. An automated translation from a
narrative language for biological modelling into process algebra. In CMSB’07,
volume 4695 of LNCS, pages 136–151. Springer, 2007.

[21] R. Milner. Communication and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

[22] J. F. Ollivier, V. Shahrezaei, and P. S. Swain. Scalable rule-based modelling
of allosteric proteins and biochemical networks. PLoS Computational Biology,
6(11):6750–5, 2010.

[23] A. Phillips and L. Cardelli. Efficient, correct simulation of biological processes
in stochastic Pi-calculus. In CMSB’07, volume 4695 of LNBI. Springer, 2007.

[24] A. Phillips, L. Cardelli, and G. Castagna. A graphical representation for biolog-
ical processes in the stochastic pi-calculus. In Transactions on Computational
Systems Biology VII, volume 4230 of LNCS, pages 123–152. Springer, 2006.

[25] S. Pradalier, C. Laneve, and G. Zavattaro. From biochemistry to stochastic
processes. In QALP’09, ENTCS. Elsevier, 2009. to appear.

[26] C. Priami. Stochastic pi-calculus. The Computer Journal, 38(7):578–589, 1995.
[27] C. Priami, P. Quaglia, and A. Romanel. BlenX static and dynamic semantics.

In CONCUR’09, volume 5710 of LNCS, pages 37–52. Springer, 2009.
[28] C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic

name-passing calculus to representation and simulation of molecular processes.
Information Processing Letters, 80:25–31, 2001.

[29] A. Regev and E. Shapiro. Cellular abstractions: Cells as computation. Nature,
419:343, 2002.

[30] B. J. Ross. The evolution of higher-level biochemical reaction models. Genetic
Programming and Evolvable Machines, 2011. in press, Technical Report at Brock
University, Department of Computer Science, CS-10-02.

[31] J. A. Swanson and A. D. Hoppe. The coordination of signaling during Fc
receptor-mediated phagocytosis. Journal of Leukocyte Biology, 76:1093–1103,
2004.

[32] A. Tiwari, C. Talcott, M. Knapp, P. Lincoln, and K. Laderoute. Analyzing
pathways using SAT-based approaches. In Gerhard Goos, Juris Hartmanis, and
Jan van Leeuwen, editors, Second International Conference, Algebraic Biology
2007, volume 4545 of LNCS, pages 155–169. Springer, 2007.

An Intuitive Modelling Interface for Systems Biology 19

Appendix A

site f on FcR associates site i on IgG with rate 2.0

site y on FcR gets phosphorylated if site f on FcR is bound

site z on FcR gets phosphorylated if site f on FcR is bound

The SPiM code resulting from the automated translation of this model.

directive sample 10.0

directive plot FcR7(); FcR6();

FcR5(); FcR4(); FcR3();

FcR2(); FcR1();

FcR0(); IgG1(); IgG0();

Phosph1(); Phosph0()

new fi1@1.0:chan(chan)

new phosphy2@1.0:chan(chan)

new phosphz3@1.0:chan(chan)

new nil@0.0:chan

let FcR0() =

(new f@1.0:chan

!fi1(f)*2.0; FcR1(f))

and FcR1(f:chan) =

(do ?phosphy2(y); FcR4(f,y)

or ?phosphz3(z); FcR5(f,z))

and FcR2(y:chan) =

(new f@1.0:chan

!fi1(f)*2.0; FcR4(f,y))

and FcR3(z:chan) =

(new f@1.0:chan

!fi1(f)*2.0; FcR5(f,z))

and FcR4(f:chan,y:chan) =

(?phosphz3(z); FcR7(f,y,z))

and FcR5(f:chan,z:chan) =

(?phosphy2(y); FcR7(f,y,z))

and FcR6(y:chan,z:chan) =

(new f@1.0:chan

!fi1(f)*2.0; FcR7(f,y,z))

and FcR7(f:chan,y:chan,z:chan) =

()

let IgG0() =

(?fi1(i); IgG1(i))

and IgG1(i:chan) =

()

let Phosph0() =

(new phosph@1.0:chan

do !phosphy2(phosph)*1.0;

Phosph1(phosph)

or !phosphz3(phosph)*1.0;

Phosph1(phosph))

and Phosph1(phosph:chan) =

()

run 1000 of FcR0()

run 1000 of IgG0()

run 1000 of Phosph0()

8 Appendix B

site f on FcR associates site i on IgG with rate 2.0

site y on FcR gets phosphorylated if site s on FcR is bound

site z on FcR gets phosphorylated if site s on FcR is bound

site s on FcR associates site sr on Src if site f on FcR is bound

site s on FcR dissociates site sr on Src

The SPiM code resulting from the automated translation of this model.

directive sample 10.0

directive plot FcR15();

FcR14(); FcR13(); FcR12();

FcR11(); FcR10();

FcR9(); FcR8(); FcR7();

FcR6(); FcR5();

FcR4(); FcR3(); FcR2();

FcR1(); FcR0();

IgG1(); IgG0();

Phosph1(); Phosph0();

Src1(); Src0()

new fi1@1.0:chan(chan)

new phosphx2@1.0:chan(chan)

new phosphy3@1.0:chan(chan)

new ssr4@1.0:chan(chan)

new nil@0.0:chan

20 International Journal of Software and Informatics, Vol., No.,

let FcR0() =

(new f@1.0:chan

!fi1(f)*2.0; FcR1(f))

and FcR1(f:chan) =

(new s1@0.50:chan

!ssr4(s1)*1.0; FcR5(f,s1))

and FcR2(s1:chan) =

(new f@1.0:chan

do !fi1(f)*2.0; FcR5(f,s1)

or ?phosphx2(x); FcR8(s1,x)

or ?phosphy3(y); FcR9(s1,y)

or !s1; FcR0() or ?s1; FcR0())

and FcR3(x:chan) =

(new f@1.0:chan

!fi1(f)*2.0; FcR6(f,x))

and FcR4(y:chan) =

(new f@1.0:chan

!fi1(f)*2.0; FcR7(f,y))

and FcR5(f:chan,s1:chan) =

(do ?phosphx2(x); FcR11(f,s1,x)

or ?phosphy3(y); FcR12(f,s1,y)

or !s1; FcR1(f) or ?s1; FcR1(f))

and FcR6(f:chan,x:chan) =

(new s1@0.50:chan

!ssr4(s1)*1.0; FcR11(f,s1,x))

and FcR7(f:chan,y:chan) =

(new s1@0.50:chan

!ssr4(s1)*1.0; FcR12(f,s1,y))

and FcR8(s1:chan,x:chan) =

(new f@1.0:chan

do !fi1(f)*2.0; FcR11(f,s1,x)

or ?phosphy3(y); FcR14(s1,x,y)

or !s1; FcR3(x) or ?s1; FcR3(x))

and FcR9(s1:chan,y:chan) =

(new f@1.0:chan

do !fi1(f)*2.0; FcR12(f,s1,y)

or ?phosphx2(x); FcR14(s1,x,y)

or !s1; FcR4(y) or ?s1; FcR4(y))

and FcR10(x:chan,y:chan) =

(new f@1.0:chan

!fi1(f)*2.0; FcR13(f,x,y))

and FcR11(f:chan,s1:chan,x:chan) =

(do ?phosphy3(y); FcR15(f,s1,x,y)

or !s1; FcR6(f,x) or ?s1; FcR6(f,x))

and FcR12(f:chan,s1:chan,y:chan) =

(do ?phosphx2(x); FcR15(f,s1,x,y)

or !s1; FcR7(f,y) or ?s1; FcR7(f,y))

and FcR13(f:chan,x:chan,y:chan) =

(new s1@0.50:chan

!ssr4(s1)*1.0; FcR15(f,s1,x,y))

and FcR14(s1:chan,x:chan,y:chan) =

(new f@1.0:chan

do !fi1(f)*2.0; FcR15(f,s1,x,y)

or !s1; FcR10(x,y) or ?s1; FcR10(x,y))

and FcR15(f:chan,s1:chan,x:chan,y:chan) =

(do !s1; FcR13(f,x,y) or ?s1; FcR13(f,x,y))

let IgG0() =

(?fi1(i); IgG1(i))

and IgG1(i:chan) =

()

let Phosph0() =

(new phosph@1.0:chan

do !phosphx2(phosph)*1.0;

Phosph1(phosph)

or !phosphy3(phosph)*1.0;

Phosph1(phosph))

and Phosph1(phosph:chan) =

()

let Src0() =

(?ssr4(sr1); Src1(sr1))

and Src1(sr1:chan) =

(do !sr1; Src0() or ?sr1; Src0())

(* run 1000 of ... *)

